| SES # | TOPICS | READINGS |
|---|---|---|
| I. First-order Differential Equations | ||
| L0 | Simple Models and Separable Equations | EP: 1.1 and 1.4 |
| L1 | Direction Fields, Existence and Uniqueness of Solutions | EP: 1.2 and 1.3 Notes: G.1 (PDF)# SN: 1 (PDF) |
| L2 | Numerical Methods | EP: 6.1 and 6.2 Notes: G.2 (PDF)# |
| L3 | Linear Equations: Models | EP: 1.5 SN: 2 (PDF) |
| L4 | Solution of Linear Equations, Variation of Parameter | EP: 1.5 SN: 3 (PDF) |
| L5 | Complex Numbers, Complex Exponentials | SN: 5 (PDF) SN: 6 (PDF) Notes: C.1-3 (PDF) |
| L6 | Roots of Unity; Sinusoidal Functions | SN: 4 (PDF) Notes: C.4 (PDF) and IR.6 (PDF)# |
| L7 | Linear System Response to Exponential and Sinusoidal Input; Gain, Phase Lag | SN: 4 (PDF) Notes: IR.6 (PDF)# |
| L8 | Autonomous Equations; The Phase Line, Stability | EP: 1.7 and 7.1 |
| L9 | Linear vs. Nonlinear | |
| L10 | Hour Exam I | |
| II. Second-order Linear Equations | ||
| L11 | The Spring-mass-dashpot Model; Superposition Characteristic Polynomial; Real Roots; Initial Conditions | EP: 2.1, 2.2, and 2.3 upto "Polynomial Operators" SN: 9 (PDF) |
| L12 | Complex Roots; Damping Conditions | EP: 2.3 and 2.4 |
| L13 | Inhomogeneous Equations, Superposition | EP: 2.6, pp. 157-159 only, (See SN 7 (PDF) if you want to learn about beats) Notes: O.1 (PDF) |
| L14 | Operators and Exponential Signals | EP: 2.6, pp. 165-167 SN: 10 (PDF) Notes: O.1, 2, and 4 (PDF) |
| L15 | Undetermined Coefficients | EP: 2.5, pp. 144-153 SN: 11 (PDF) |
| L16 | Frequency Response | SN: 14 (PDF) |
| L17 | Applications: Guest Appearance by EECS Professor Jeff Lang | |
| L18 | Exponential Shift Law; Resonance | SN: 12 (PDF) Notes: O.3 (PDF) |
| L19 | Hour Exam II | |
| III. Fourier Series | ||
| L20 | Fourier Series | EP: 8.1 |
| L21 | Operations on Fourier Series | EP: 8.2 and 8.3 |
| L22 | Periodic Solutions; Resonance | EP: 8.3 and 8.4 |
| IV. The Laplace Transform | ||
| L23 | Step Function and Delta Function | SN: 17 (PDF) |
| L24 | Step Response, Impulse Response | SN: 18 (PDF) Notes: IR (PDF)# |
| L25 | Convolution | EP: 4.1 |
| L26 | Laplace Transform: Basic Properties | |
| L27 | Application to ODEs; Partial Fractions | EP: 4.2 and 4.3 SN: 20 (PDF) Notes: H |
| L28 | Completing the Square; Time Translated Functions | EP: 4.5-4.6 SN: 20 (PDF) |
| L29 | Pole Diagram | SN: 22 (PDF) |
| L30 | Hour Exam III | |
| V. First Order Systems | ||
| L31 | Linear Systems and Matrices | EP: 5.1-5.3 SN: 24 (PDF) Notes: LS.1 (PDF) |
| L32 | Eigenvalues, Eigenvectors | EP: 5.4 Notes: LS.2 (PDF) |
| L33 | Complex or Repeated Eigenvalues | EP: 5.4 Notes: LS.3 (PDF) |
| L34 | Qualitative Behavior of Linear Systems; Phase Plane | SN: 25 (PDF) |
| L35 | Normal Modes and the Matrix Exponential | EP: 5.7 Notes: LS.6 (PDF) |
| L36 | Inhomogeneous Equations: Variation of Parameters Again | EP: 5.8 |
| L37 | Nonlinear Systems | EP: 7.2 and 7.3 Notes: GS (PDF)# |
| L38 | Examples of Nonlinear Systems | EP: 7.4 and 7.5 Notes: GS (PDF)# |
| L39 | Chaos | |
| L40 | Final Exam | |
When you click the Amazon logo to the left of any citation and purchase the book (or other media) from Amazon.com, MIT OpenCourseWare will receive up to 10% of this purchase and any other purchases you make during that visit. This will not increase the cost of your purchase. Links provided are to the US Amazon site, but you can also support OCW through Amazon sites in other regions.